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Need for Biological Brain Inspired Ultra-Low 

Energy Computing



Human vs. Robot for Space Exploration

Humans hold a number of advantages over robots. They 

can make quick decisions in response to changing 

conditions or new discoveries, rather than waiting for time-

delayed instructions from Earth.  

http://www.wired.com/2012/04/space-humans-vs-robots/



Limitations of Currently Available 

Machine Learning: Deep Neural Network 

(DNN)

DNN  on conventional computing architecture  are 

compute intensive, power hungry, need a large set 

of training data , and are trained to solve just some 

specific sets of problems. 



Limitations of Traditional CMOS 

Transistor Scaling and Computing

http://epc-co.com/epc/EventsandNews/FastJustGotFasterBlog/Issue11.aspx

Cost of CMOS 

transistor is rising at 

20 nm node and 

beyond for the first 

time in history.

http://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-

one-core-to-many-and-why-were-still-stuck



Motivation for Artificial Brain

“Taking advantage of the almost 83,000 

processors of one of the world's most 

powerful supercomputers, the team was able to 

mimic just one percent of one second's worth 

of human brain activity—and even that took 40 

minutes.” – Gizmodo, 2013

“Challenge is to 

create an exascale

computing system 

by 2018 that 

consumes only 20 

megawatts (MW) of 

power.”- DOE grand 

challenge. 

Supercomputers

“1014 Neurons, 1015

Synapses, 1013 to 1016 

Instructions per sec, 10 W 

of Power (e.g. retinal 

operation).”

Brain
Scalable

Ultra Low-

Energy
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• How does a biological “Brain” work ??

• How can we make an artificial brain on 

chip???



How Does a Biological Brain 

Process Information?

https://computing.llnl.gov/tutorials/parallel_comp/

Von-Neumann 

Architecture

Brain-Inspired Paradigm of Computing

Components: Neurons, 

Reconfigurable Synapses, 

Interconnects

STDP
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Today’s Computing

Markram et. al., Front. Synp. NeurosSc. 2011



Neuron Operation and Action Potential Firing

Synapse



Sensory Signal Processing

Temperature, 

odor etc.

(Effector Cells)

Central Nervous 

System



What does it mean from neuro-

inspired device perspective?  

• High fan-out spiking device

• Ultra-low energy consumption ~10 fJ/spike

• Scalable 

• High reliability and endurance

• Reconfigurable 

• Ultra Low-power

• Scalable

• High endurance and reliability

• Minimal Variability

Neuron

Synapse



Sensory Information Coding



Spike Coding of Odor

Mainland et. al., Trends in Neurosciences August 2014, Vol. 37, No. 8



Sensory Neurons in Silicon 

Axon-Hillock Circuit, proposed by Prof. Carver Mead, 

1980’s
Indiveri et. al., Frontiers in Neuroscience, 2011



Learning Algorithms
• Supervised Learning

– Feed-Forward

– Back-Propagation

– Gradient-Descent

• Unsupervised Learning for Spiking Neural 
Network

– Hebbian Learning (Spike Timing Dependent 
Plasticity)

• Neurons that fire together, wire together

• Basis of Associative Memory



Spike Timing Dependent 

Plasticity

Which synapses are 

strengthened? Which ones are 

depressed? 

Bi et. al. J. of NeuroSci, 1998
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Doped Oxide Dynamics for Synaptic Memory
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Mandal/Jha et. al., Nature Sci. Rep, 2014
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10 Potentiating Pulses 2.5V/1ms applied at given frequency and Current measured at 0.5V read after excitation. 

Potentiation was repeated 30 times  (total 300 pulses) with conductance measuring intervals of 10 pulses. After 

potentiation for 300 pulses, 300 depression pulses  at  -1.5V/1ms were applied at the given frequency and 

measurement of current at 0.5V read was done in intervals of 10 pulses.
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Potentiation and Depression with Pulses
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Endurance with Pulses of Different Pulse-Widths
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Distribution over Cycle to Cycle
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Spike Timing Dependent Plasticity
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Synaptic Memory Device Model
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Mandal/Jha et. al., Nature Sci. Rep, 2014

Sarim/Kumar/Jha et. al., NAECON, 2016



Neuromorphic Platform

• A neuromorphic platform is
configured as an array of
several Synaptic Memory
devices arranged as shown.

• The arrays are connected to
proximity sensors that send
in the information about the
vicinity of the robot. The
motor neuron circuits move
the robot wheels.



Simulation Framework
• Two different models, viz., mathematical device model and

experimentally derived device model, for synaptic memory

devices with the neuromorphic platform were implemented

to demonstrate unsupervised learning in a robot.

• This approach was validated by simulating the robot to

navigate in an unknown environment with randomly placed

obstacles.

• The commercially available Khepera III robot [4] is modeled

with a two-wheeled differential drive robot kinematics. The

robot consists of five ultrasonic sensors that give the

information about the vicinity of the robot.

[4] http://www.k-team.com/mobile-robotics-products/old-products/khepera-iii

http://www.k-team.com/mobile-robotics-products/old-products/khepera-iii


𝜈 =
𝑟

2
𝜔𝑅 + 𝜔𝐿

𝜔 =
𝑟

𝑏
𝜔𝑅 − 𝜔𝐿

 𝑥 = 𝜈 cos 𝜃
 𝑦 = 𝜈 sin 𝜃
 𝜃 = 𝜔

Robot Kinematics 

,Gianluca et. al., IEEE Transactions on Robotics 21.5 (2005): 994-1004.



Learning Scheme

target



Device Model:

 𝑤 = 𝑓 𝜈𝑀𝑅

𝑓 𝜈𝑀𝑅 = 𝐼0𝑠𝑖𝑔𝑛 𝜈𝑀𝑅 𝑒 𝜈𝑀𝑅 /𝜈0 − 𝑒𝜈𝑡ℎ/𝜈0

𝜈𝑀𝑅 𝑡, Δ𝑇 = 𝛼𝑝𝑜𝑠𝑠𝑝𝑘 𝑡 − 𝛼𝑝𝑟𝑒𝑠𝑝𝑘 𝑡 + Δ𝑇

Δ𝑤 Δ𝑇 =  𝑓 𝜈𝑀𝑅 𝑡, Δ𝑇 𝑑𝑡 = 𝜉 Δ𝑇

STDP learning function:

𝜉 Δ𝑇 =  
𝑎+𝑒−  Δ𝑇 𝜏+ 𝑖𝑓 Δ𝑇 > 0

−𝑎−𝑒−  Δ𝑇 𝜏− 𝑖𝑓 Δ𝑇 < 0

Mathematical Model

change in structural parameter of the device

memristor voltage

where

Δ𝑇 is the difference in the spike times of pre-

and post-synaptic neurons

𝑠𝑝𝑘 𝑡 is the spike shape

𝐼0 , 𝑣0 are device parameters, 𝑣𝑡ℎ is the

threshold voltage of the device above which it

spikes, 𝛼 are attenuation parameters in pre- and

post-synaptic neurons. 𝜉 is the change in the

synaptic weight that is used to implement STDP.



Robot Navigation Results
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Navigation Results with Synaptic Memory 
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Conclusions
• We demonstrated the potential for having an onboard 

“artificial brain” for Robots based on emerging 

neuromorphic devices. 

• Using artificial brain architecture, a successful Robotic 

navigation was demonstrated using unsupervised learning 

scheme to guide the robot in complex environments using 

the local knowledge of obstacles only.

– Our approach overcomes the issue of local minima 

which is a challenge for other navigation algorithms.

• Our approach is projected to be highly energy-efficient and 

scalable for implementation on any robot.

• Future work is targeted towards the actual implementation 

of these neuromorphic devices based artificial brain on 

Robots and field verification of the navigation. 
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